According to Gartner’s Adaptive Security Architecture model, if they are to successfully fight cybercrime in the current threat environment, SOC Teams must be able to:

• PREDICT
• DETECT
• PREVENT
• RESPOND

A survey recently conducted by B2B International ("Global IT Security Risks Survey 2017"), involving over 5274 businesses in 25 countries, found a significant increase in all types of attack in comparison to 2016:

• 49% of respondents (+11%) had experienced severe issues with viruses and malware over the previous 12 months, resulting in a loss of productivity.

• 49% overall and 55% of enterprises had experienced data loss/leakage/exposure.

• Around 40% of respondents highlighted these challenges as a specific concern.

• 33% (+16%) of businesses had suffered a DDoS attack in the previous 12 months, often more than once.

• 23% of businesses had been affected by a crypto-malware incident in the last 12 months.

• The proportion of businesses reporting experiencing an attack rose significantly to 77% this year.

• For an enterprise business suffering at least one data breach, the average financial impact was $992k (this includes additional internal staff wages, damage to credit ratings/insurance premiums, lost business, extra PR to repair brand damage and employing external consultants).

• Coordinated multi-vector attacks are particularly serious problems for businesses with over 1000 employees as the financial impact is likely to be around twice as high – up to $1.7m.

The SOC is a centralized function for constant threat monitoring and analysis, and the mitigation and prevention of cybersecurity incident

According to Gartner’s Adaptive Security Architecture model, if they are to successfully fight cybercrime in the current threat environment, SOC Teams must be able to:

• PREDICT
• DETECT
• PREVENT
• RESPOND

"Security operations centers must be architected for intelligence, embracing an adaptive security architecture to become context aware and intelligence-driven. Security leaders should understand how intelligence-driven SOCs use tools, processes and strategies to protect against modern threats."

Gartner, The Five Characteristics of an Intelligence-Driven Security Operations Center, November 2015
Four Key Elements

Four key elements, together with clearly defined processes and relevant technologies, must be in place to sustain this industry-recognized approach. They are:

- **Knowledge management.** People (SOC team members) must be well-trained in digital forensics, malware analysis and incident response in order to prevent and successfully respond to increasingly sophisticated attacks.

- **Threat intelligence**, collected from many different sources (the more the better) is essential to timely detect emerged threats:
 1. Internal threat data
 2. Intelligence from open sources (OSINT)
 3. Industry CERTs
 4. Global anti-malware vendors

- **Threat hunting** to proactively search for threats being undetected by traditional security systems like firewall, IPS/IDS, SIEM etc.

- **An incident response framework** implemented to limit damage and reduce remediation costs.

Each of these elements is equally important and warrant separate consideration.

Figure 1: The four key elements of the SOC
Knowledge Management

The SOC must provide a resource-pool of practical knowledge and expertise sufficient to analyze a vast amount of data and to identify where further investigation is required.

Limited budgets make staffing the SOC a challenge.

The market is currently experiencing a shortage of well-trained cybersecurity professionals, resulting in increased recruitment and employment costs.

An effective SOC Team Member must have:

• An inquisitive mind, able to construct an integrated overall picture from scattered data fragments.
• The ability to maintain a continuous focus while withstanding high stress levels.
• A good general knowledge of IT and cybersecurity, preferably including plenty of practical experience.

Whether you look to fill SOC roles through external recruitment or internal promotion, finding team members with the desired skills ‘out of the box’ is not easy. Ongoing training will be needed, not just to fill the gaps between current and required skillsets, but to equip team members to deal with ever-changing security technologies and a continuously evolving threat environment.

Incident response, digital forensics and malware analysis are indispensable competencies.

Incident response & digital forensics

• Timely and accurately responding to the incident
• Analysing evidence (hdd images, memory dumps, network activity traces) and reconstructing the incident history and logic
• Revealing the presumed sources of the attack and other likely compromised systems (if possible)
• Understanding the root cause of the incident to prevent any similar incident arising

Malware analysis

• Gaining an understanding of the suspicious software sample and its capabilities
• Defining whether it is in fact malware
• Determining the potential impact the sample might have on compromised systems within the organization
• Building a comprehensive a remediation plan based on the malware behavior revealed

Kaspersky Lab offers: Cybersecurity Training Services

For more than 20 years, Kaspersky Lab’s cybersecurity expertise – including threat detection, malware research, reverse engineering and digital forensics – has been continuously evolving and advancing. Our experts understand how best to handle the threats posed by the 325,000 malware samples we encounter every day, and how to impart that knowledge and hands-on experience to organizations confronted with the new dangers of contemporary cyber-reality.

Our Security Training Program has been designed and developed by the security authorities who helped build Kaspersky’s anti-virus labs, and who now inspire and mentor the next generation of global experts.

Courses are designed to include both theoretical classes and practical ‘labs’. On completion of each course, students are invited to validate their knowledge through an evaluation.

Training courses are suitable for IT-related professionals possessing general or advanced system administration and programming skills. All courses are available either in-class on customer premises or at local or regional Kaspersky Lab offices, as applicable.
Tools change with time, but basics and methods of work remain consistent. Participants will receive, not just a set of tools and instructions, but an understanding of fundamental principles and functionality. All practical tasks are based on real cases, wherever this is possible without breaching customer confidentiality.

Program Description

<table>
<thead>
<tr>
<th>Topics</th>
<th>Duration</th>
<th>Skills gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Forensics</td>
<td>5 days</td>
<td>• Build a Digital Forensics lab</td>
</tr>
<tr>
<td>• Introduction to Digital Forensics</td>
<td></td>
<td>• Collect digital evidence and deal with it properly</td>
</tr>
<tr>
<td>• Live response and evidence acquisition</td>
<td></td>
<td>• Reconstruct an incident and use time stamps</td>
</tr>
<tr>
<td>• Windows registry internals</td>
<td></td>
<td>• Find traces of intrusion based on artifacts in Windows OS</td>
</tr>
<tr>
<td>• Windows artifacts analysis</td>
<td></td>
<td>• Find and analyze browser and email history</td>
</tr>
<tr>
<td>• Browsers forensics</td>
<td></td>
<td>• Be able apply with the tools and instruments of digital forensics</td>
</tr>
<tr>
<td>• Email analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Malware Analysis & Reverse Engineering

<table>
<thead>
<tr>
<th>Topics</th>
<th>Duration</th>
<th>Skills gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Malware Analysis & Reverse Engineering goals and techniques</td>
<td>5 days</td>
<td>• Build a secure environment for malware analysis: deploy sandbox and all necessary tools</td>
</tr>
<tr>
<td>• Windows internals, executable files, x86 assembler</td>
<td></td>
<td>• Understand principles of Windows program execution</td>
</tr>
<tr>
<td>• Basic static analysis techniques (string extraction, import analysis, PE entry points at a glance, automatic unpacking, etc.)</td>
<td></td>
<td>• Unpack, debug and analyze a malicious object, identify its functions</td>
</tr>
<tr>
<td>• Basic dynamic analysis techniques (debugging, monitoring tools, traffic interception, etc.)</td>
<td></td>
<td>• Detect malicious sites through script malware analysis</td>
</tr>
<tr>
<td>• .NET, Visual Basic, Win64 files analysis</td>
<td></td>
<td>• Conduct express malware analysis</td>
</tr>
<tr>
<td>• Script and non-PE analysis techniques (Batch files; Autolt; Python; JScript; JavaScript; VBS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced Digital Forensics

<table>
<thead>
<tr>
<th>Topics</th>
<th>Duration</th>
<th>Skills gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deep Windows Forensics</td>
<td>5 days</td>
<td>• Be able to perform deep file system analysis</td>
</tr>
<tr>
<td>• Data recovery</td>
<td></td>
<td>• Be able to recover deleted files</td>
</tr>
<tr>
<td>• Network and cloud forensics</td>
<td></td>
<td>• Be able to analyze network traffic</td>
</tr>
<tr>
<td>• Memory forensics</td>
<td></td>
<td>• Reveal malicious activities from dumps</td>
</tr>
<tr>
<td>• Timeline analysis</td>
<td></td>
<td>• Reconstruct the incident timeline</td>
</tr>
<tr>
<td>• Real world targeted attack forensics practice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced Malware Analysis & Reverse Engineering

<table>
<thead>
<tr>
<th>Topics</th>
<th>Duration</th>
<th>Skills gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advanced static analysis techniques (analyzing shellcode statically, parsing PE header, TEB, PEB, loading functions by different hash algorithms)</td>
<td>5 days</td>
<td>• Differentiate APTs from other threats</td>
</tr>
<tr>
<td>• Advanced dynamic analysis techniques (PE structure, manual and advanced unpacking, unpacking malicious packers that store the full executable in an encrypted form)</td>
<td></td>
<td>• Understand various attackers' techniques and targeted attack anatomy</td>
</tr>
<tr>
<td>• APT reverse engineering (cover an APT attack scenario, starting from phishing email and going as in-depth as possible)</td>
<td></td>
<td>• Apply specific methods of monitoring and detection</td>
</tr>
<tr>
<td>• Protocol analysis (analyse encrypted C2 communication protocol, how to decrypt traffic)</td>
<td></td>
<td>• Follow incident response workflow</td>
</tr>
<tr>
<td>• Rootkits and Bootkits analysis (debugging the boot sector using Ida and VMWare, Kernel debugging using 2 virtual machines, analyzing Rootkit samples)</td>
<td></td>
<td>• Reconstruct incident chronology and logic</td>
</tr>
<tr>
<td>• Different detection rules and reporting</td>
<td></td>
<td>• Create detection rules and reporting</td>
</tr>
</tbody>
</table>

Incident Response

<table>
<thead>
<tr>
<th>Topics</th>
<th>Duration</th>
<th>Skills gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduction to Incident Response</td>
<td>5 days</td>
<td>• Differentiate APTs from other threats</td>
</tr>
<tr>
<td>• Detection and primary analysis</td>
<td></td>
<td>• Understand various attackers’ techniques and targeted attack anatomy</td>
</tr>
<tr>
<td>• Digital analysis</td>
<td></td>
<td>• Apply specific methods of monitoring and detection</td>
</tr>
<tr>
<td>• Creating of detection rules (YARA, Snort, Bro)</td>
<td></td>
<td>• Follow incident response workflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reconstruct incident chronology and logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create detection rules and reporting</td>
</tr>
</tbody>
</table>

Program Description

- **Digital Forensics**
 - Introduction to Digital Forensics
 - Live response and evidence acquisition
 - Windows registry internals
 - Windows artifacts analysis
 - Browsers forensics
 - Email analysis

- **Malware Analysis & Reverse Engineering**
 - Malware Analysis & Reverse Engineering goals and techniques
 - Windows internals, executable files, x86 assembler
 - Basic static analysis techniques (string extraction, import analysis, PE entry points at a glance, automatic unpacking, etc.)
 - Basic dynamic analysis techniques (debugging, monitoring tools, traffic interception, etc.)
 - .NET, Visual Basic, Win64 files analysis
 - Script and non-PE analysis techniques (Batch files; Autolt; Python; JScript; JavaScript; VBS)

- **Advanced Digital Forensics**
 - Deep Windows Forensics
 - Data recovery
 - Network and cloud forensics
 - Memory forensics
 - Timeline analysis
 - Real world targeted attack forensics practice

- **Advanced Malware Analysis & Reverse Engineering**
 - Advanced static analysis techniques
 - Advanced dynamic analysis techniques
 - APT reverse engineering
 - Protocol analysis
 - Rootkits and Bootkits analysis

- **Incident Response**
 - Introduction to Incident Response
 - Detection and primary analysis
 - Digital analysis
 - Creating of detection rules (YARA, Snort, Bro)
Threat intelligence and threat hunting

The SOC was traditionally built to provide:

- Security device management, perimeter maintenance and preventive security technologies such as IPS/IDS, firewalls, proxies etc.
- Security event monitoring through a Security Information and Event Management system (SIEM).
- Incident forensics and remediation.
- Internal or regulatory compliance (e.g. PCI-DSS).

Many organizations are now planning to gain greater threat visibility by establishing their own SOCs. However, some organizations who already have a SOC find they still face many of the same problems. There are a number of reasons for this:

- Poor prioritization, meaning that real threats get buried among the thousands of insignificant security alerts received and analyzed each day.
- Incident remediation without a proper understanding of the TTPs (Tactics, Techniques and Procedures) of associated threat actors, resulting in advanced attacks being overlooked.
- False negatives due to the lack of corresponding threat data.
- A reactive incident approach, rather than proactively ‘hunting out’ threats lying undiscovered but active within the organization.
- No strategic overview of the existing threat landscape, or awareness of attacks on similar enterprises and the countermeasures available.
- Problems attracting adequate internal investment into specific security technologies, due to difficulties communicating the risks to business processes associated with security breaches to non-technical board level executives.

Based on these considerations, security leaders would be well-advised to follow an intelligence-driven SOC approach. For the SOC to be effective, it must continuously accommodate new technologies and controls in line with sweeping changes in the ongoing threat environment.

Gartner defines Threat Intelligence as: “Evidence-based knowledge, including context, mechanisms, indicators, implications and actionable advice about an existing or emerging menace or hazard to assets, that can be used to inform decisions regarding the subject’s response to that menace or hazard.”

Gartner, How Gartner Defines Threat Intelligence, February 2016
Combining internal threat data with information gathered from various different sources (e.g. OSINT or global anti-malware vendors) provides an understanding of attack techniques and their potential indicators. This in turn allows organizations to develop efficient defensive strategies against commodity and advanced attacks targeting specific organizations.

Intelligence sources should be carefully selected. There’s a direct correlation between the quality of intelligence used and the effectiveness of decisions made on the basis of this intelligence. If you rely on intelligence that’s irrelevant, inaccurate or not aligned with your industry or business goals, or if threat information is not received promptly, the quality of your organization’s decision-making may be seriously compromised.

Raw data without context will not provide the relevance needed for SOC teams to be fully effective. For example, knowing that a specific URL is malicious is very different from also knowing that it’s used to host an exploit or a specific type of malware. This additional layer of intelligence tells your security experts what to look out for as they explore an infected machine.

What to look for in external Threat Intelligence sources:
- Intelligence with a global reach, providing the broadest attack visibility
- A provider with a track record in spotting new threat indicators early
- Context-rich, immediately actionable intelligence
- Delivery formats and mechanisms that allow easy integration into existing security controls
Threat hunting is also an important element of everyday SOC operations. This is not a new concept. The detection of unknown and advanced threats relies on the painstaking, hands-on efforts of security analysts, rather than automated rules or signature-based detection mechanisms.

This process involves gathering and applying different techniques (such as statistical analysis, machine learning and visualization) to all available data obtained from endpoints, networks, implemented security controls, authentication systems etc. The objective is to confirm an existing hypothesis regarding the potential breach. Threat-hunting technologies the analyst may employ include those already mentioned — SIEM solutions, OSINT, Threat Intelligence Platforms and other data sources.

The threat-hunting analyst will consult externally obtained IOCs (Indicators of Compromise), and apply specialized tools to search for these artefacts (in the form of IP addresses, file hashes, URLs etc.) inside the organization’s hosts. Where a clear sign of compromised security is unearthed, incident response procedures can be initiated.

Trawling through huge volumes of data to identify artefacts that automated measures have failed to detect is a task for highly qualified and experienced professionals.
Kaspersky Lab offers Threat Data Feeds

Kaspersky Lab offers continuously updated Threat Data Feeds to inform your SOC team about risks and implications associated with cyberthreats, helping you to mitigate threats more effectively and to defend against attacks even before they are launched.

Feed description

- **IP Reputation Feed** — a set of IP addresses with context covering suspicious and malicious hosts.
- **Malicious URLs** — a set of URLs covering malicious links and websites. Masked and non-masked records are available.
- **Phishing URLs** — a set of URLs identified by Kaspersky Lab as phishing sites. Masked and non-masked records are available.
- **Botnet C&C URLs** — a set of URLs of botnet command and control (C&C) servers and related malicious objects.
- **Ransomware URL Feed** — covering links that host ransomware objects or that are accessed by them.
- **APT IoC Feeds** — covering malicious domains, hosts, malicious IP addresses, malicious files used by adversaries to commit APT attacks and YARA rules for related files or even malware families.
- **Whitelisting Data Feed** — a set of file hashes providing third-party solutions and services with a systematic knowledge of legitimate software.
- **Malicious Hash Feed** — covering the most dangerous, prevalent and emerging malware.
- **Mobile Malicious Hash Feed** — a set of file hashes for detecting malicious objects that infect mobile platforms.
- **P-SMS Trojan Feed** — a set of Trojan hashes with corresponding context for detecting SMS Trojans ringing up premium charges for mobile users as well as enabling an attacker to steal, delete and respond to SMS messages.
- **Mobile Botnet C&C URLs** — a set of URLs with context covering mobile botnet C&C servers.

![Figure 4: Threat Data Feeds integration with SIEM](image-url)
Kaspersky Threat Intelligence Portal delivers all the knowledge acquired by Kaspersky Lab about cyberthreats and their relationships, brought together into a single, powerful web service. The goal is to provide your SOC teams with as much data as possible, preventing cyber-attacks before they impact your organization. The Portal retrieves the latest detailed threat intelligence about URLs, domains, IP addresses, file hashes, threat names, statistical/behavior data, WHOIS/DNS data, file attributes, geolocation data, download chains, timestamps, while Cloud Sandbox allows that knowledge to be linked to the IOCs generated by the analyzed sample. The result is global visibility of new and emerging threats, helping you secure your organization and boosting incident response.

Threat intelligence delivered by Kaspersky Threat Intelligence Portal is generated and monitored in real time by a highly fault-tolerant infrastructure ensuring continuous availability and consistent performance. Hundreds of experts, including security analysts from across the globe, world-famous security experts from our GReAT team and leading-edge R&D teams, all contribute to generating valuable real-world threat intelligence.

Service highlights

- **Trusted Intelligence**: A key attribute of Kaspersky Threat Intelligence Portal is the reliability of our threat intelligence data, enriched with actionable context. Kaspersky Lab products lead the field in anti-malware tests\(^1\), demonstrating the unequaled quality of our security intelligence by delivering the highest detection rates, with near-zero false positives.

- **Threat Hunting**: Be proactive in preventing, detecting and responding to attacks, to minimize their impact and frequency. Track and aggressively eliminate attacks as early as possible. The earlier you can discover a threat – the less damage is caused, the faster repairs take place and the sooner network operations can get back to normal.

- **Sandbox Analysis**: Detect unknown threats by running suspicious objects in a secure environment, and review the full scope of threat behavior and artifacts through easy-to-read reports.

- **Wide Range of Export Formats**: Export IOCs (Indicators of Compromise) or actionable context into widely used and more organized machine-readable sharing formats, such as STIX, OpenIOC, JSON, Yara, Snort or even CSV, to enjoy the full benefits of Threat Intelligence, automate operations workflow, or integrate into security controls such as SIEMs.

- **Easy-to-use Web Interface or RESTful API**: Use the service in manual mode through a web interface (via a web browser) or access via a simple RESTful API as you prefer.

1. http://www.kaspersky.com/top3
APT Intelligence Reporting

Not all Advanced Persistent Threat discoveries are reported immediately, and many are never publicly announced. Be the first to know our latest researches with our exclusive, in-depth, actionable intelligence reporting on APTs.

As a subscriber to Kaspersky APT Intelligence Reporting, you are provided with unique ongoing access to our investigations and discoveries, including full technical data supplied in a range of formats, on each APT revealed, including all those threats that will never be made public. Our experts, the most skilled and successful APT hunters in the industry, will also alert you immediately to any changes they detect in the tactics of cybercriminal groups. Furthermore, you will have access to Kaspersky Lab’s complete APT reports database – a further powerful research and analysis component of your corporate security armory.

From a practical perspective, Indicators of Compromise are the most actionable part of the report for SOC experts. This structured information is provided for subsequent use with specific automated tools that help check your infrastructure for signs of infection.

All reports are available via web interface or can be accessed via RESTful API.
Tailored Threat Reporting

Customer-specific Threat Reporting

What’s the best way to mount an attack against your organization? Which routes and what information is available to an attacker specifically targeting you? Has an attack already been mounted, or are you about to come under threat?

Kaspersky Customer-specific Threat Reporting answers these questions and more, as our experts piece together a comprehensive picture of your current attack status, identifying weak-spots ripe for exploitation and revealing evidence of past, present and planned attacks.

Empowered by this unique insight, you can focus your defense strategy on areas pinpointed as cybercriminals’ prime targets, acting quickly and with precision to repel intruders and minimize the risk of a successful attack.

Developed using open source intelligence (OSINT), deep analysis of Kaspersky Lab expert systems and databases and our knowledge of underground cybercriminal networks, these reports cover areas including:

- Identification of threat vectors: Identification and status analysis of externally available critical components of your network – including ATMs, video surveillance and other systems using mobile technologies, employee social network profiles and personal email accounts – that are potential targets for attack.
- Malware and cyber-attack tracking analysis: Identification, monitoring and analysis of any active or inactive malware samples targeting your organization, any past or present botnet activity and any suspicious network based activity.
- Third-party attacks: Evidence of threats and botnet activity specifically targeting your customers, partners and subscribers, whose infected systems could then be used to attack you.
- Information leakage: through discreet monitoring of underground online forums and communities, we discover whether hackers are discussing attack plans with you in mind or, for example, if an unscrupulous employee is trading information.
- Current attack status: APT attacks can continue undetected for many years. If we detect a current attack affecting your infrastructure, we provide advice on effective remediation.

Quick start – easy to use – no resources needed

Once parameters (for customer-specific reports) and preferred data formats are established, no additional infrastructure is needed to start using this Kaspersky Lab service.

Kaspersky Threat Intelligence Reporting has no impact on the integrity and availability of resources, including network resources.

Country-specific Threat Reporting

Cybersecurity of a country comprises protection of all its major institutions and organizations. Advanced persistent threats (APT) against government authorities can affect national security; possible cyberattacks against manufacturing, transportation, telecommunication, banking and other pivotal industries potentially can lead to significant damage on the state level, like financial losses, production accidents, blockage of network communications, and popular discontent.

Having an overview of the current attack surface and the current trends in malware and hacker attacks targeting your country, you can focus your defense strategy on areas pinpointed as cybercriminals’ prime targets, acting fast and with precision to repel intruders and minimize the risk of successful attacks.
Created using approaches ranging from Open source intelligence (OSINT) to deep analysis of Kaspersky Lab expert systems and databases, and our knowledge of the underground cybercriminal networks, Country-specific Threat reports cover areas including:

- **Identification of threat vectors**: identification and status analysis of externally available critical IT resources of the country – including vulnerable government applications, telecommunication equipment, industrial control systems’ components (such as SCADA, PLCs, etc.), ATMs, etc.

- **Malware and cyber-attack tracking analysis**: identification and analysis of APT campaigns, active or inactive malware samples, past or present botnet activity, and other notable threats targeting your country, based on data available in our unique internal monitoring resources.

- **Information leakages**: through clandestine monitoring of underground forums and online communities, we discover whether hackers are discussing attack plans with certain organizations in mind. We also reveal notable compromised accounts, which could pose risks to suffered organizations and institutions (for instance, accounts belonging to government agencies’ employees available in the Ashley Madison breach, which could be used for blackmailing).

Kaspersky Threat Intelligence Reporting has no impact on the integrity and availability of the network resources being inspected. The service is based on non-intrusive network reconnaissance methods, and analysis of information available in open sources and resources of limited access.

As the conclusion of the service you will be provided with a report containing description of notable threats for different state industries and institutions, as well as additional information on detailed technical analysis results. Reports are delivered via encrypted email messages.

The service can be provided as a one-time project or periodically under a subscription (for example, quarterly).

Kaspersky Managed Protection

The Kaspersky Managed Protection service offers Kaspersky Endpoint Security and Kaspersky Anti Targeted Attack Platform users a fully managed service, deploying a unique range of advanced technical measures to detect and prevent targeted attacks on your organization. The service includes round-the-clock monitoring by Kaspersky Lab experts and the continuous analysis of cyberthreat data, ensuring the real-time detection of both known and new cyberespionage and cybercriminal campaigns targeting critical information systems.

![Figure 8: Kaspersky Managed Protection](image-url)
Service highlights

- A continuously high level of protection against targeted attacks and malware, with 24x7 monitoring and support from your own ‘crack team’ of Kaspersky Lab experts, drawing on a deep pool of specialist skills and ongoing threat intelligence.
- The timely and accurate detection of non-malware attacks, attacks involving previously unknown tools and attacks exploiting zero-day vulnerabilities.
- Immediate protection against any detected threat through automatic antivirus database updates.
- Retrospective analysis of incidents and threat hunting, including the methods and technologies used by threat actors against your organization.
- An integrated approach – The Kaspersky Lab portfolio includes all the technologies and services you need to implement a complete cycle of protection against targeted attacks: Preparation – Detection – Investigation – Data Analysis – Automated Protection.

Service benefits

- Fast, efficient detection, enabling faster and more effective mitigation and remediation.
- No time-wasting false positives, thanks to the clear, immediate identification and classification of any suspicious activity.
- Reduced overall security costs. No need to employ and train a range of different in-house specialists you may need.
- The reassurance of knowing that you are continuously protected against even the most complex and innovative non-malware threats.
- Insights into attackers, their motivation, their methods and tools, and the potential damage they could inflict, supporting the development of your fully informed, effective protection strategy.

More about Kaspersky Threat Intelligence sources

Threat Intelligence is aggregated from a fusion of heterogeneous and highly reliable sources, including the Kaspersky Security Network (KSN) and our own web crawlers, our Botnet Monitoring service (24/7/365 monitoring of botnets and their targets and activities), spam traps, research teams, partners and other historical data about malicious objects collected by Kaspersky Lab over almost two decades. Then, in Real Time, all aggregated data is carefully inspected and refined using multiple preprocessing techniques, such as statistical criteria, Kaspersky Lab Expert Systems (sandboxes, heuristics engines, similarity tools, behavior profiling etc.), analyst validation and whitelisting verification.

With appropriately skilled and trained People in place, and Threat Intelligence acquired from reliable sources and implemented into existing security controls, its time to consider your Incident Response.
Incident response framework

Forensics and incident response requires the allocation of considerable internal resources at little or no notice. Knowledgeable specialists, armed with extensive practical experience of fighting cyberthreats, will need to act quickly to identify, isolate and block malicious activity. Speed is of the essence, if consequences and remediation costs are to be minimized.

Mastering this level of expertise at short notice can be challenging, even for a well-established SOC Team – few organizations have sufficient in-house resources on hand to stop an advanced attack in its tracks. Additionally, there may be cases, e.g., complex state sponsored threats or APTs, where the SOC Team lacks an expert knowledge of the specific approaches and tactics used by the APT actors involved.

In cases like these, it may be more cost-effective and productive to collaborate with a third-party Incident Response vendor or consultancy, who will be geared up to applying a rapid, fully-informed response.

A comprehensive Incident Response Framework should include:

- **Incident Identification**
 Initial incident analysis and isolation of the infected systems

- **Evidence acquisition**
 Depending on the type of the incident, different sources will need to be inspected to obtain the necessary evidence

- **Forensic Analysis (if required)**
 At this stage, a detailed picture of the incident can be established

- **Malware Analysis (if required)**
 To gain an understanding of given malware capabilities

- **Remediation Plan**
 Development of a plan to eradicate both the root cause of the problem and all traces of the malicious code

- **Lessons learned**
 Existing security controls review and update to prevent similar incidents

![Diagram of Incident Response Framework](figure10)

Kaspersky Lab offers: Incident Response Services

Incident Response is our premium service, covering the entire incident investigation cycle, from the onsite acquisition of evidence to the identification of additional indications of compromise, preparing a remediation plan and completely eliminating the threat to your organization. Kaspersky Lab’s investigations are carried out by highly experienced Cyber-Intrusion Detection Analysts and Investigators. The full weight of our global expertise in Digital Forensics and Malware Analysis can be brought to bear on the resolution of your security incident.
The following objectives are to be achieved during execution of the service:

- Identifying compromised resources.
- Isolating the threat.
- Preventing the attack from spreading.
- Finding and gathering evidence.
- Analyzing the evidence and reconstructing the incident’s chronology and logic.
- Analyzing the malware used in the attack (if any malware is found).
- Uncovering the sources of the attack and other potentially compromised systems (if possible).
- Conducting tool-aided scans of your IT infrastructure to reveal possible signs of compromise.
- Analyzing outgoing connections between your network and external resources to detect anything suspicious (such as possible command and control servers).
- Eliminating the threat.
- Recommending further remedial action you can take.

Depending on whether or not you have your own incident response team, you can ask our experts to execute the complete investigation cycle, to simply identify and isolate compromised machines and prevent dissemination of the threat, or to conduct Malware Analysis or Digital Forensics.

Malware analysis

Malware Analysis offers a complete understanding of the behavior and objectives of the specific malware files that are targeting your organization. Kaspersky Lab’s experts carry out a thorough analysis of the malware sample you provide, creating a detailed report that includes:

- **Sample properties:** A short description of the sample and a verdict on its malware classification.
- **Detailed malware description:** An in-depth analysis of your malware sample’s functions, threat behavior and objectives – including IOCs – arming you with the information required to neutralize its activities.
- **Remediation scenario:** The report will suggest steps to fully secure your organization against this type of threat.

Digital forensics

Digital Forensics can include malware analysis as above, if any malware was discovered during the investigation. Kaspersky Lab experts piece together the evidence to understand exactly what’s going on, including the use of HDD images, memory dumps and network traces. The result is a detailed elucidation of the incident. You as the customer initiate the process by gathering evidence and providing an outline of the incident. Kaspersky Lab experts analyze the incident symptoms, identify the malware binary (if any) and conduct the malware analysis in order to provide a detailed report including remediation steps.

Delivery options

Kaspersky Lab’s Incident Response Services are available:

- By subscription
- In response to a single incident

Both options are based on the amount of time our experts spend to resolving the incident. This is negotiated with the customer prior signing the contract. Customer may flexibly include as much working hours as he thinks are necessary or follow our experts’ recommendations tailored to each specific case.
Why kaspersky lab?

Because we have:

- Partnerships with global law enforcement agencies such as Interpol and CERTs
- Cloud-based tools monitoring millions of cyberthreats across the globe in real-time
- Global teams analyzing and understanding internet threats of all kinds

Because we are:

- The world’s largest independent security software company, focused on Threat Intelligence and technology leadership
- The undisputed leader in more independent malware detection tests than any other vendor
- Identified as Leader by Gartner, Forrester and IDC

About Kaspersky Lab

Kaspersky Lab is the world’s largest privately held vendor of endpoint protection solutions. The company is ranked among the world’s top four vendors of security solutions for endpoint users. Throughout its more than 19-year history, Kaspersky Lab has remained an innovator in IT security and provides effective digital security solutions for enterprises, SMBs and consumers. With its holding company registered in the United Kingdom, Kaspersky Lab operates in almost 200 countries and territories worldwide, providing protection for over 350 million users across the globe.

Disclaimer.

This document is not a public offer and is intended for introductory purposes only.

The scope of the service can vary depending on it’s availability in the specific geographical region. Some services described in the document require additional agreement with Kaspersky Lab.

For additional details, please contact Kaspersky Lab’s regional representative or send your request to intelligence@kaspersky.com.
Expert analysis
Big Data / Threat Intelligence
HuMachine™

www.kaspersky.com
© 2018 AO Kaspersky Lab. All rights reserved. Registered trademarks and service marks are the property of their respective owners.

Kaspersky Lab
Enterprise Cybersecurity: www.kaspersky.com/enterprise
Cyber Threats News: www.securelist.com
IT Security News: business.kaspersky.com/

#truecybersecurity
#HuMachine

www.kaspersky.com