
AI under
Attack

How to Secure
Machine
Learning
in Security
Systems

Alexander Chistyakov, Alexey Andreev
Kaspersky Threat Research

During the mid-2010s, Artificial Intelligence (AI) and its key
component Machine Learning (ML) were the hot topics in information
security. These technologies were set to deliver on the over-hyped
expectations coming out of ‘Big Data’; we’d learned to collect a lot
of numbers, and we needed ways to extract all the good stuff they
contained. Vendors of so-called Next-Gen security solutions played
this up in a big way – ‘legacy antivirus’ was now dead, killed by the
mighty new ‘AI antivirus’ approach (though actual test results hardly
bore this thesis out).

According to Cisco1, the
percentage of information
security officers
enthusing about machine
learning has cooled from
77% in 2018 to 67% in 2019,
while interest in artificial
intelligence has also
dropped from 74% to 66%.

Introduction

Since then, AI fervor has gone somewhat off the boil. According to Cisco1, the
percentage of information security officers enthusing about machine learning has
cooled from 77% in 2018 to 67% in 2019, while interest in artificial intelligence has also
dropped from 74% to 66%. Even the Gartner analysts who initially praised Next-Gens
have become more selective in 2019, stating that ‘artificial intelligence’ does not
automatically mean a ‘better product’ in today’s security.
One of the main reasons for this cooling off (and we’re certainly not talking an ‘AI winter’
here – just an adjustment of unrealistic expectations) is that ML algorithms, once
released from the confines of the lab and introduced into the real world, have turned
out to be pretty fallible in terms of detection performance. On top of which, they’re
vulnerable to potential attacks designed to force them into making deliberate errors.

1 The CISO Benchmark Report 2019
2 Simen Thys, Wiebe Van Ranst,
Toon Goedeme. Fooling automated
surveillance cameras: adversarial
patches to attack person detection. -
arXiv, 2019

All this is bad news for the security industry. Suddenly, at security conferences over
the last couple of years, we’re talking not just ‘AI’, but ‘Adversary AI’. We now have to
face up to ML hacks. Some of the most spectacular examples of how to baffle ML
based models are the simplest – a fragment of paper glued to a road sign means it’s
identified as a completely different sign, facial recognition software is easily tricked
by a pair of paper glasses, and just holding a picture can render you unidentifiable as a
human being.
Okay, so we’re not purely reliant on automatic image recognition for identity checks
right now. But mistakes in ML-based recognition have already led to innocent people
being branded as criminals. In November 2018, the Shanghai police system accused a
famous Chinese businesswoman of ‘ jaywalking’, after a security camera captured her
face on an advertisement on the side of a bus. At around the same time, in New York, a
student filed a $1 billion lawsuit against Apple after the tech giant’s facial-recognition
software apparently wrongly identified him as someone stealing from their stores.
In May this year, the San Francisco authorities banned the use of facial recognition
software by police and other city agencies, to prevent similar mistakes and abuses.
Malware detection worldwide uses ML learning methods very similar to those used
in facial recognition systems. And the impact of attacks on ML-based anti-malware
systems could be devastating: a mis-identified Trojan means millions of devices
infected and millions of dollars lost.
The good news is that, by meeting specific conditions and by protecting ML systems
appropriately, these threats can be averted. In this paper, we present an overview of
popular attacks on ML algorithms in information security, and discuss methods to
protect ML solutions from these threats.

A person detector fooled by an adversarial patch. The illustration from KU Leuven research2

PERSON

https://arstechnica.com/information-technology/2017/04/the-mystery-of-the-malware-that-wasnt/
https://arstechnica.com/information-technology/2017/04/the-mystery-of-the-malware-that-wasnt/
https://blogs.cisco.com/security/the-state-of-machine-learning-in-2019
https://blogs.cisco.com/security/the-state-of-machine-learning-in-2019
https://blogs.cisco.com/security/the-state-of-machine-learning-in-2019
https://blogs.gartner.com/anton-chuvakin/2019/05/06/our-assessing-the-impact-of-machine-learning-on-security-published/
https://arxiv.org/pdf/1707.08945.pdf
https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://arxiv.org/pdf/1904.08653.pdf
https://arxiv.org/pdf/1904.08653.pdf
https://www.abacusnews.com/digital-life/facial-recognition-camera-catches-top-businesswoman-jaywalking-because-her-face-was-bus/article/2174508
https://nypost.com/2019/04/22/apples-facial-recognition-software-led-to-false-arrest-suit/
https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html
https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html
https://arxiv.org/abs/1810.08280
https://arxiv.org/abs/1810.08280

How ML works

Forms of attacks and how to defend
against them

Machine learning (ML), a subset of Artificial Intelligence (AI), is often described as a
set of methods and technologies that give computers the ability “to learn without being
explicitly programmed.” In other words, an ML algorithm is a program that can itself
build programs for solving different problems.
To do this, an ML algorithm can either learn from a set of already solved cases (known
as supervised learning), or it can find previously unknown similarities and correlations
in a given dataset (unsupervised learning).
In supervised learning, ML works either in training mode or in battle mode. In training
mode, the ML algorithm is given a training dataset of objects represented by their
features, and their labels. If we’re talking malware detection, the objects could be files,
their features might be different file meta-data or behaviors (file statistics, list of used
API functions, etc.) and their labels could simply be ‘malware’ or ‘benign’.
Based on this training dataset of known malware and known benign objects, the ML
algorithm must create a predictive model which should then correctly label (as
‘malware’ or ‘benign’) previously unseen objects (new files). After this training, the ML
model moves into battle mode and is used for detection.
In unsupervised learning, we’re interested in revealing hidden patterns and clusters in
the data being examined by the algorithm - groups of similar objects, highly correlated
features or events. So the data given to ML algorithm for training is not labelled, and
the ML algorithm works out the correlations by itself.
In the cybersecurity industry, unsupervised learning is of particular value for
behavioral analysis and anomaly detection.

Label poisoning For this type of attack on ML algorithms, the hacker needs to be able to access
the training dataset, so he could add incorrectly labelled objects. Trained on this
incorrect data, the ML model will make detection errors when faced with similar
objects.

But getting access to this supervised dataset must be pretty difficult? In fact, no.
Many vendors exchange threat data through threat intelligence feeds, and there
are known examples of where that data has been tampered with. For example, data
from threat intelligence aggregators like VirusTotal has been poisoned by specially
crafted clear files with inserted malware features. After one antivirus scanner
erroneously labels one of these clear files as malicious, this incorrect data may be
passed on to other security solutions, causing a chain reaction of ‘false positive’
identifications (detecting similar clear files as malicious) worldwide.

Defense:
Double-check and
ensemble working

All labelled files received by Kaspersky from third-party feeds are double-checked
with our own databases to ensure they’re correctly classified. Mistakes in ML-based
classification are also reduced by ‘ensembling’ - enabling different ML models to
work in harness, and in combination with human expert analysis.

Training dataset
poisoning

With access, an attacker can also poison a dataset by adding special objects that
degrade the performance of the prediction model. In this type of attack, the labels
are correct (or, in the case of unsupervised learning, the dataset is not labelled) but
the added objects themselves are strange: for example, a file that’s very different
from those commonly used (a ‘black swan’).
This form of threat is particularly insidious, as many ML developers, including some
Next-Gen vendors, use public datasets that can easily be poisoned by third parties.

https://www.virusbulletin.com/uploads/pdf/conference_slides/2013/BatchelderJia-VB2013.pdf
https://www.virusbulletin.com/uploads/pdf/conference_slides/2013/BatchelderJia-VB2013.pdf

Defense:
Protect your datasets
and discern ‘strangers’

If an attacker doesn’t know what samples you used to train your model, it’s harder
to create out-of-distribution objects. Kaspersky’s training datasets are in general
collected by ourselves, and they are not public: only some specific types of analyzed
malware are exported via external feeds. The logs for our behavioral ML models are
based on a unique internal mechanism that can’t be accessed by outsiders.

We’ve also developed a method to estimate the ‘level of trust’ for a prediction made
about a particular object. This gives our behavioral ML-based systems the ability to
discern ‘strange’ files and reject their classification, so they won’t break the model.
And, last but not least, multi-layered protection is a good defense against this type
of attack. Even if ML-based static analysis is fooled, the malware still would be
detected by dynamic analysis (using an emulator or sandbox).

White box / black
box adversarial
attack

An attacker who doesn’t have access to training datasets can still interact with
an ML model. A determined hacker with full access to the model itself, perhaps in
the local client product, can study it privately as long as it takes, and may then be
able to reverse-engineer the code. Through this, the attacker can learn the model
architecture, establish what file features the model uses, and then create malware
that circumvents these features – this is known as a ‘white box’ or ‘model stealing’
attack.

One example of such an attack is the Cylance AI bypass uncovered in July 2019.
Analyzing the code of the endpoint protection product, researchers found the name
of a popular online game in the ‘whitelisting’ mechanism. They added strings from
this game’s main executable into a malicious file – and this modified malware then
became immune from detection by the Cylance product.

If the source code is unavailable, an attacker can ’brute-force’ the ML model by
repeatedly making small changes in the malware created, and testing the results
against the ML model until a weak point is discovered. This ‘black box’ form attack is
labor-intensive, so may be highly automated, using specially developed ‘adversarial
AI’ to generate the attacking samples.

Defense:
Use cloud ML models

Cloud based models mean an intruder can’t play with the model locally. Take the
example of our ML threat detection for Android. Here, an agent on the user’s device
collects the features of a new application, this meta-data is then sent to a powerful
cloud ML model trained on millions of samples, and the decision is immediately sent
back to the mobile device.
Of course, technically, an attacker could still try to brute-force the cloud ML model.
But a black box attack like this takes a lot of time and would be easily detected.

ML-created detection
records

Both cloud and in-lab ML models can create discrete detection records to be added
to the product’s database. If the attacker manages to reverse-engineer a detection
record, he could only fool that particular record. He can’t break the ML model, which
automatically generates a new record with which to detect his modified threat.
Here’s an example. In Kaspersky’s Similarity Hash Detection System, in-lab ML is
used to find the features common to a whole group of similar malicious files. Based
on these features, Similarity Hashes (SHs) are created and sent as detection records
to local products via the Kaspersky Security Network cloud. An endpoint product
calculates the specific SH for an examined file locally, then compares this with the
SH databases. This approach allows our products to detect whole families of quickly
changing polymorphic malware - with no risk of the ML model being hacked.

Provably robust ML
model

Another way to protect your ML system from adversarial attacks is to build an ML
model that won’t be broken by changes in adversarial samples. For our behavioral ML
system, we developed a concept of monotonic classification models that ensures
predictions are consistent over execution time and are provably stable in the face of
injections of any noise or `benign-looking’ activity into the program’s behavior. The
predictions of such models change monotonically through the execution log, in the
sense that the addition of new lines into the log may only increase the probability of
the file being found malicious, which make these ML models suitable for real-time
classification on an endpoint.

https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
http://proceedings.mlr.press/v80/ilyas18a/ilyas18a.pdf
https://openreview.net/forum?id=rkjatuyvM

Attacks on pre-
trained and
outsourced ML
models

Lack of resources means that some developers make use of third-party ML
architectures, which have been created for standard data processing tasks. These
off-the-shelf ML solutions may already be well-known to malefactors, making it easy
to organize a white box attack.

At a recent security conference, a well-known vendor proudly announced “We
publish all our ML models on GitHub”. Asked about the risk of white box attacks, a
speaker said that the average hacker couldn’t do this because such attacks would
require highly sophisticated skills. It was a very bold answer when, literally just next
door, the results of ML hacking research were being presented.

Another threat vector resulting from reliance on third parties is that of ML models
trained by external groups of data scientists or by public ML services – these
models can contain backdoors.

Defense:
Don’t trust third parties

We train our models ourselves, on our own hardware.

Actually, there’s an additional reason for this in-house approach: interpretability. ML
model development is a complex process dealing with a very intricate architecture
of thousands of nodes and weightings. If a developer wants to verify the
correctness of the system’s decisions, understand the reason for possible mistakes
and be able to investigate the intrusion, he or she must know how to interpret the ML
model’s results.

That’s something we do regularly with our ML models - analyze their interpretability.
With outsourced ML models, this would be much harder (and perhaps impossible) to
do.

Data leaks via
trained models

In some cases, an intruder could feed the ML model with specially selected samples
in order to gain information about objects used in the training dataset. This could be
a threat if the objects contain sensitive information (like personal medical records)
or if the very fact that the object is being presented in the dataset is sensitive (for
example, criminals may find out that their pictures are being used to train a police
facial recognition system).

Defense:
Reduce access,
anonymize data

Just as in white box attacks, an intruder usually needs full access to the ML model in
order to play with it until sensitive information is obtained. One way to avoid this is to
use multilayered cloud ML models instead of models in client products.
Another good idea is to anonymize the data used in training. Some vendors offer ML
models that work specifically with encrypted data.

Hardware based
attacks

Some heavy ML methods require a lot of computation, and the results may vary on
different processors. For example, a model is trained in-lab on a powerful computer,
but then has to work on a client’s phone. An attacker can create a special file that
is misclassified on some phone models, which in turn could lead to the incorrect
labelling of this file in other detection systems (similar to a data poisoning attack).

Defense:
Methods independent of
local architecture

This threat is just another reason not to have ML models on client products, like
phones. We ourselves use cloud ML or discrete detection records created by our
in-lab ML systems (see above).
It’s also worth mentioning that some ML methods (e.g. decision trees) are less
dependent on hardware differences than others (e.g. neural networks).

https://venturebeat.com/2018/12/03/intel-open-sources-he-transformer-a-tool-that-allows-ai-models-to-operate-on-encrypted-data/

www.kaspersky.com

2019 AO Kaspersky Lab. All rights reserved.
Registered trademarks and service marks are the property
of their respective owners.

Cyber Threats News: www.securelist.com
IT Security News: business.kaspersky.com
IT Security for SMB: kaspersky.com/business
IT Security for Enterprise: kaspersky.com/enterprise

We are proven. We are independent. We are
transparent. We are committed to building a safer
world, where technology improves our lives. Which
is why we secure it, so everyone everywhere has the
endless opportunities it brings. Bring on cybersecurity
for a safer tommorow.

Know more at kaspersky.com/transparency

Further information
•	 Kaspersky TechoWiki (kaspersky.com/technowiki) is a great source of information

and thought-leadership on advanced security technologies including AI, ML and
behavior-based protection.

•	 Securelist.com provides the most recent and detailed data on modern malware,
targeted attacks and other cyber-criminal trends across the world.

Conclusion
For all the over-hyping, AI and ML play a valuable role in information security. Here
at Kaspersky, we began using ML-based algorithms long before the Next-Gen buzz,
and these algorithms are utilized in many stages of our detection pipeline, including
clustering methods to pre-process incoming file streams in-lab, deep learning models
for cloud detection, and ML-created records in product databases.
However, our studies reveal that ML algorithms could be vulnerable to many forms of
attack. Some key considerations should be applied to ML use in security systems:

•	 The security vendor should understand and carefully address essential
requirements for ML performance in the real, potentially hostile, world –
requirements that include extremely low false positive rates, a robustness to
potential adversaries, and the interpretability of ML models. ML/AI-specific
security audits and ‘red-teaming’ should be a key component of ML/AI
development.

•	 In assessing the security of an ML solution, questions should be asked about how
much the solution depends on third party data and architectures, as so many
attacks are based on third party input (we’re talking threat intelligence feeds, public
datasets, pre-trained and outsourced ML models).

•	 ML methods should not be viewed as ‘the ultimate answer’. They need be a part of
multi-layered security approach, where complementary protection technologies
and human expertise work together, watching one other’s backs.

http://www.securelist.com
http://business.kaspersky.com
http://kaspersky.com/business
http://kaspersky.com/enterprise
http://kaspersky.com/transparency
https://www.kaspersky.com/enterprise-security/wiki-section/home
https://securelist.com/
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity

